高校受験家庭教師の極意


1. 授業で最初にすべきこと
〜生徒の能力を引き出す下地を作る
2. 生徒が自ら考えようとする意欲を引き出す
3. 〈コラム〉親の関わり方
4. 教師は頼られる存在であるとともにきさくである必要がある
5. 生徒の記憶に残りやすいように問題を単純化する

 

 問題を解説するときに、解説の仕方によってはその問題が難しくも簡単にもなります。問題の解説は単純明快で生徒の記憶に残りやすいことが必要です。たとえていうならば、解説は深い大地を時間をかけて染み出ていった1滴の純水となることが望ましいんです。生徒は授業中に様々な言葉を投げかけられますが、授業後に何も頭に残っていなければ意味がありません。まさに“一滴(ひとしずく)の純水”を生徒の頭に残せたか、それが授業の成功と不成功を分ける分水嶺(ぶんすいれい)となります。

では、次の問題ではどのように解説すべきでしょうか。

【問い】 縦の長さが2cm、横の長さが5cmの長方形を向きをそろえて並べ、1辺の長さが90cmの正方形をつくります。この正方形の対角線は何個の長方形と交わりますか。

【答え】 54個

 この問題は中1で習う整数の問題です。2cmと5cmの最小公倍数である10cmを1辺とする正方形を最小単位として計算していくことになります。

図1に対角線を書き込むと下のようになりますから、最小単位の正方形では6個の長方形と交わる、従って図2の1辺90cmの正方形では 6×9=54(個)となるんですね。

 この問題は解けるには解けましたが、図1が複雑になったら(例えば縦が10列で横が11列になると実際に図を書いて対角線を引いてもその対角線と交わる長方形の数が数えられません)、それはもう計算で解くしかありません。ここで、生徒に「この問題は実は植木算なんだ」とふってみるんです。つまり、図1を45度傾けると、図3のように植木算とまったく同じになるんです。植木算とは、「100mの道路に10mおきに木を植えるには木は何本必要ですか」なんてやつですね。

 従って図1の求め方を一般化すると、縦がm列、横がn列であれば、対角線と交わる長方形の個数は(m−n−1)個、本問では(2+5−1=)6個、となります。

 重要なことは生徒自身が試験本番で解けるかどうかですから、解法を示してそのままにしないことです。あくまで印象付け、本問では「植木算だ」とシンボリックな印象を与えておくところまでが授業なのです。

前のページへ  次のページへ  ページのトップへ 資料請求・お問い合わせ